
ulqda: A LATEX package supporting Qualitative

Data Analysis

Ivan Griffin
ivan.griffin@ul.ie

2009/06/11

Abstract

ulqda is a LATEX package for use in Qualitative Data Analysis research.
It assists in the analysis of textual data such as interview transcripts and
field notes. This document corresponds to ulqda v1.1, dated 2009/06/11.

Contents

1 Introduction 2
1.1 What is Qualitative Data Analysis? 2
1.2 What does this package do? . 2
1.3 Why is this package named ulqda? 2
1.4 Acknowledgements . 3
1.5 Legal Mumbo-Jumbo . 3

2 Prerequisites 3

3 Known Limitations and Issues 4
3.1 docstrip woes - in this very document! 4

4 Why use LATEX for QDA Automation? 4

5 Installation 6

6 Usage 6
6.1 Options . 6

6.1.1 Advanced Options Usage 7
6.2 Macros . 8
6.3 Example . 9

6.3.1 Coding Example . 9
6.3.2 Typeset Example . 10
6.3.3 CSV Cache File . 10
6.3.4 Visualisation as a Table . 10

1

6.3.5 Visualisation as a Cloud . 11
6.3.6 Visualisation as Graphs . 11

7 Implementation 14
7.1 Dependencies . 14
7.2 Highlighting Style . 14
7.3 Package Options . 14
7.4 Testing the Shell Escape Mechanism 15
7.5 Active Macro Implementation . 15
7.6 Inactive Macro Stubs . 22

1 Introduction

This document describes ulqda, a LATEX package which supports the integration of
Qualitative Data Analysis (QDA) research tasks, specifically for Grounded Theory,
into the LATEX work flow. For a quick start example, see section 6.3.

1.1 What is Qualitative Data Analysis?

Qualitative Data Analysis is a field of inquiry that is popular in social science re-
search [1]. Scientific methods within QDA aim to gain comprehensive and holistic
understandings of the motivations for human behaviour in many different situa-
tions.

Grounded Theory is a qualitative methodology that emphasises the genera-
tion of new theory from its natural emergency through the process of continual
collection, compaction and analysis [2, 3].

1.2 What does this package do?

The ulqda package provides the LATEX user with macros which are used to markup
textual information - for example, in-depth interviews - in order to facilitate the
distillation of emerging themes from the data in a consistent and reliably manner,
and to support visualisation of these themes.

In other words, this package lets the computer do the grunt work, and the
researcher focus on recognising and comprehending the emerging theories from
the work.

The package works by creating a comma-separate values (CSV) cache file of the
codes and associated text it finds in your LATEX source. It then post-processes this
CSV file to GraphViz Dot language, and uses dot2texi.sty to optionally render
this data as graphs. The filename for the CSV file is generated automatically from
the LATEX current jobname.

1.3 Why is this package named ulqda?

The name ulqda is simply the initials of my alma mater, the University of Limerick,
prepended onto the abbreviation QDA to generate a unique name. The ulqda prefix

2

http://www.graphviz.org
http://www.ul.ie/

is used within the package on macro names and conditionals to prevent naming
clashes.

1.4 Acknowledgements

Special thanks to Marc van Dongen and Peter Flynn of the Irish TEX and LATEX
In-Print Community for their assistance in creating the LATEX macro to perform
the coding.

Thanks to Kjell Magne Fauskes for the excellent dot2tex and dot2texi.sty
packages.

And finally, a special shout out to Matthias Noe for pointing out some issues
with an earlier version of this package.

1.5 Legal Mumbo-Jumbo

This document and the ulqda package are copyright c© 2009 Ivan Griffin.
The ulqda package may be distributed under the conditions of the LATEX Project

Public License, either version 1.2 of this license or (at your option) any later
version. The latest version of this license is in:

http://www.latex-project.org/lppl.txt

and version 1.2 or later is part of all distributions of LATEX version 1999/12/01 or
later.

2 Prerequisites

ulqda requires the use of pdfeTEX. The following LATEX packages, available on
CTAN, are needed by the ulqda package:

• color.sty - provides LATEX support for colour;

• soul.sty - provides support for highlighting text;

• multicol.sty - defines an environment for typesetting text in multiple
columns;

• PGF/TikZ - macro package for the creation of graphics in TEX;

• dot2texi.sty - allows the embedding of GraphViz graphs (described in Dot
language) in LATEX documents.

In addition, the following external tools are required for processing and
graph/list generation:

• GraphViz is a tool to automate graph visualisation [4], a means of graph-
ically ‘representing structural information as diagrams of abstract graphs
and networks’;

3

https://listserv.heanet.ie/cgi-bin/wa?A0=ITALIC-L
https://listserv.heanet.ie/cgi-bin/wa?A0=ITALIC-L
http://www.latex-project.org/lppl.txt
http://www.ctan.org/
http://sourceforge.net/projects/pgf/
http://www.fauskes.net/nb/introducing-dot2texi/
http://www.graphviz.org/

• dot2tex is a tool for converting graphs generated by GraphViz to PGF/TikZ
that can be rendered with LATEX [5];

• Perl and the Digest::SHA1 Perl Module are used to automate the conversion
of coded output to Dot language.

3 Known Limitations and Issues

For some reason, the underlining trick provided by soul.sty and used by this pack-
age fails to work when a color model option is passed to xcolor.sty. The trouble
seems to be with soul.sty’s \texthl{} macro.

A rather unsatisfactory workaround is to redefine \ulqdaHighlight to some-
thing like the following, somewhere in your own document after you have used
\usepackage[cmyk]{xcolor} and \usepackage{ulqda}:
\renewcommand{\ulqdaHighlight}[2]{%
\colorbox{UlQda@lightblue}{\mbox{#2}}
\marginpar%
{\raggedright\hbadness=10000\tiny\it\colorbox{UlQda@lightblue}{#1}\par}%

}
Note however that this is not without its own typesetting abberations.

3.1 docstrip woes - in this very document!

As I am using a single .dtx file to produce both ulqda.sty and ulqda.pl, I used
mechanisms to separate each - notably <package> and <perl> filters established
with the docstrip \generate macro. However, for some reason these filters are
being output in the typeset source listings for the LATEX macros in this document.
Unfortunately, the docstrip documentation is suitable terse and has not as of yet
enlightened me as to how to fix this issue. Please ignore them - or better, suggest
the fix!

4 Why use LATEX for QDA Automation?

An obvious question at this point is why use LATEX for QDA work flow automation?
Surely there are plenty of commercial offerings on the market that can perform
the same or similar task?

In my opinion, incorporating the coding markup into the LATEX typesetting
flow has a number of benefits:

• it helps keep coding near the data - developer Brad Appleton describes this
well [6]:

‘The likelihood of keeping all or part of a software artifact con-
sistent with any corresponding text that describes it, is inversely
proportional to the square of the cognitive distance between them.’

4

http://www.fauskes.net/code/dot2tex/
http://www.perl.org/

Appleton also expands on the concept of cognitive distance [6]:

‘The phrase “out of sight, out of mind” gives a vague indication of
what is meant by “cognitive distance” . . . it relates to the interrup-
tion of “flow” of the developers’ thoughts between the time they
first thought of what they needed to do, and the time and effort
expended before they were actually able to begin doing it. ’

• coding can easily be output as a recorded high-quality typeset deliverable -
this is possible with other commercial tools, although the output is not as
aesthetic as using LATEX - it is certainly more difficult to do this with pen,
paper and scissors techniques;

– in addition, typesetting the coded data is very valuable - it allows oth-
ers to check the validity of the output (theme emergence and theory
building) of your work, and provides a resource for subsequent (perhaps
affiliated) researchers to use (subject to confidentiality and disclosure
agreements, etc.)

– Using LATEX allows you to easily keep the interviews typographically
consistent with the styles and notations used in the main dissertation;

• it allows for a significant degree of flexible in the work flow, limited primarily
by your imagination, and not by the functionality of a commercial package.
A LATEX based scheme can ‘fit naturally into a work flow where there are
many tools, each good at its own job’[7]. As the LATEX typesetting run itself
is generating the coded output data in an easily accessible format (comma-
separated values), it is possible to post-process this and visualize the data
in a number of different ways:

– coupled with an appropriate version control system, the LATEX QDA
work flow can provide full traceability of a theme from the collec-
tion of source interview data, condensation into codes, iterative re-
finement of these codes into orthogonal and related sets, and presenta-
tion/visualisation of the generated ontologies;

– it is possible to generate ‘heatmaps’, mixing qualitative analysis with
some element of quantitative analysis, and to use color coding or
font/size scaling based on frequency of occurrence of certain codes or
themes;

– it is also possible to visually recognize saturation occurring in emerg-
ing themes - again through the use of appropriate color coding of new
themes on a per-interview basis - the output format includes the doc-
ument section information per code to facilitate this post-processing;

• this package and the LATEX typesetting system are freely available - you may
be unwilling or unable to pay for commercial software;

5

5 Installation

The package ulqda is distributed as dtx archive together with a corresponding
Makefile. dtx files are text files which combines a LATEX package with other
helper files and documentation for its own code.

In order to install this package, you must:

1. Run make to use the supplied Makefile. This will extract the macro and
script files from the dtx archive, and it will also generate documentation for
the packages user interfaced and code: When built with make, the following
files are generated:

• ulqda.pdf - contains this documentation;

• ulqda.sty - contains the actual macro implementations;

• ulqda.pl - a helper script to parse the CSV output.

2. Copy ulqda.sty to either the working directory of your current LATEX
project, or to your personal TEX tree. For Unix users, the procedure to
copy to your personal tree is:
$ make
$ mkdir -p ~/texmf/tex/latex/ulqda
$ cp ulqda.sty ~/texmf/tex/latex/ulqda

3. Tell TEX to re-index its directories to enable it to recognize the new package:
$ texhash ~/texmf

4. Copy ulqda.pl to a directory in your path. Again, for Unix users, the
procedure to do this is as follows:
$ cp ulqda.pl ~/bin

6 Usage

We will now look at how the package is used - how to set its various options, the
macros it provides, and an example of its operation.

6.1 Options

To use the package in your LATEX document, insert \usepackage[...]{foo} in
the preamble. There are a number of options which can be passed to the package:

• active: The default is inactive. If this option is not specified, the ulqda
package will be inactive and the document will be typeset as if the ulqda
package were not loaded, except that all macros defined by the package are
still legal but only the \ulqdaHighlight macro has an effect.

This allows final typesetting of the document and for page numbering to sta-
bilize before running through for a coding pass. The recommendation is to
activate for the last two LATEX passes through the document - that way the

6

CSV file is generated once page numbering is allowed to settle. To activate
subsequently, it is possible to invoke LATEX as follows:
$ pdflatex --shell-escape "\PassOptionsToPackage{active}{ulqda}

\input{filename.tex}"

• cache/nocache: This is an advanced option which controls whether the CSV
file is generated or not.

• debug: This option enables verbose debug output from ulqda.

• MiKTeX: This determines whether MiKTEX is supported or not. MiKTEX is
a version of TEX that runs on Microsoft Windows platforms.

• shell/noshell: These options control whether an attempt will be made to
process the coding output file via spawning the ulqda.pl script directly, or
whether it needs to be run explicitly by the user. shell is the default, but
it requires --shell-escape (TEX Live) or --enable-write18 (MiKTEX) as
a command line argument to latex to enable it.

• counts: This option determines whether code output will include occurence
counts or not. The default is to not output the counts.

In summary, to ensure correct section/page numbers, set the active and leave
the cache setting at its default (nocache) for each run. It is possible to tweak
both of these to reduce the processing time, being aware of potential side-effects!

6.1.1 Advanced Options Usage

The use of the active and cache options are primarily to speed up the process of
performing QDA code extraction through the LATEX typesetting flow. Some care
is needed with their use, and it makes sense to select active,nocache as default
options until comfortable with the typesetting flow for a particular document –
otherwise section numbering/page numbering in the generated CSV file may be
incorrect.

If this isn’t a concern (i.e. traceability and per-section filtering for graph vi-
sualisation isn’t required), then setting active,cache on one pass through LATEX
will give best performance.

If page numbers / section numbers are required, then the appropriate use
of these options will need to be made as required by the specific LATEX flow
being used – i.e. enable as appropriate. It will need to run like this at least
3 times (once to generate the CSV file, once to generate the .Dot output,
and once to import any generated figures or tables. I suggest integrating
something like the following for the last 3 LATEX passes through the source:
$ pdflatex --shell-escape "\PassOptionsToPackage{active,nocache}{ulqda}

\input{filename.tex}"
$ pdflatex --shell-escape "\PassOptionsToPackage{active,cache}{ulqda}

\input{filename.tex}"
$ pdflatex --shell-escape "\PassOptionsToPackage{active,cache}{ulqda}

7

http://www.miktex.org/

\input{filename.tex}"

6.2 Macros

\ulqdaCode is used to assign a code a particular sentence or passage of text.\ulqdaCode

Coding is a form of data condensing, where the words of the passage are compacted
and distilled into as few succinct words as possible with the aim of capturing the
essence or theme of the passage.

\ulqdaCode takes a list of codes as a first parameter, and the raw text as its
second. It invokes \ulqdaHighlight in order to format the passage for typesetting
purposes, and outputs the code, page number, section number, and raw text to
the CSV file - one line per code.

The list of codes is a comma separated list; code hierarchies and connections
can be expressed by chaining codes together using the exclamation mark - for
example, ‘geographical!urgency’ would indicate a relationship between the code
‘geographical’ and the code ‘urgency’.
Usage: \ulqdaCode{code1,code2,code3}{Common Text}

\ulqdaHighlight is used to format coded text for typesetting purposes. By\ulqdaHighlight

default, it highlights the coded text in a light blue color, and it also lists the
associated codes in the margin. It can be redefined to whatever formatting codes
the package user requires.
Usage: \ulqdaHighlight{code1,code2,code3}{Common Text}

\ulqdaGraph is a macro which invokes processing of the generated CSV file to\ulqdaGraph

allow the visualisation of a coded ontology as a GraphViz diagram. It take two
arguments:

• graph type - this can be either ‘flat’ which is an unstructured graph (see
figure 1(a)), or ‘net’ (see figure 1(b)), where the ontology relationships are
shown as a connected graph;

• dot2texi options - this is a list of options that would typically be used in a
dot2tex environment. Listing these is outside the scope of this document,
but the following set of options is used in the diagrams in this document:
neato,mathmode,options={--graphstyle "scale=0.5,transform shape".

Usage: \ulqdaGraph{graph type}{dot2texi options}

\ulqdaTable is a macro which invokes processing of the generated CSV file to\ulqdaTable

create a LATEX table (see table 1).
Usage: \ulqdaTable

\ulqdaCloud is a macro which invokes processing of the generated CSV file to\ulqdaCloud

create a LATEX cloud (see table 2).

8

Usage: \ulqdaCloud

\ulqdaSetSectFilter establishes a filter for the next \ulqdaGraph or \ulqdaTable\ulqdaSetSectFilter

macro. If interviews are logically structured in a document with each in its own
section (or sub-section etc.) then this command can be used to establish a filter
restricting the graphing or table generation to a single interview.
Usage: \ulqdaSetSectFilter{section label}

\ulqdaClearSectFilter clears a section filter establihed by \ulqdaSetSectFilter\ulqdaClearSectFilter

so that a subsequent \ulqdaGraph or a \ulqdaTable macro will process all sec-
tions from the CSV file.
Usage: \ulqdaClearSectFilter

6.3 Example

What follows is an interview excerpt that has been taken through the entire flow,
i.e.:

• coded;

• typeset; and

• visualized as a tabular list of codes and also as graphs.

6.3.1 Coding Example

First, here is the raw LATEX source:

\textbf{IG:} Do you think the social aspect of face

to face is important for the project? ...

\textbf{Interviewee~XYZ:} ... A cup of coffee is really

important because then what happens is that you get a

real perspective. My general experience of having a

functional group in one site, while I was in the other

one, working for me and using video conferencing,

\ulqdaCode{geographical!urgency, geographical!face-eo-face}{if you

really wanted to get things done you had to jump on

a plane and fly over, there was nothing that could make

up for sitting in a room with people to both get across

the urgency and to ensure that communication among

the team took place to address any of the issues...}

9

6.3.2 Typeset Example

Next, we will see what happens when this source is typeset. The mainbody text
is itself highlighted so that it stands out from surrounding text, and the codes are
present in the margin.

IG: Do you think the social aspect of face to face is important
for the project? . . .
Interviewee XYZ: . . . A cup of coffee is really important
because then what happens is that you get a real perspective.
My general experience of having a functional group in one site,
while I was in the other one, working for me and using video
conferencing, if you really wanted to get things done you
had to jump on a plane and fly over, there was nothing that
could make up for sitting in a room with people to both get
across the urgency and to ensure that communication among
the team took place to address any of the issues.. . .

geographi-

cal!urgency,

geographi-

cal!face-to-face

6.3.3 CSV Cache File

The following shows an example of the comma-separated value cache file generated
for the coded text above. The first line of this file is a header and is ignored in
processing by the ulqda.pl script.

Page Number, Section, Code, Text

2, 0, geographical!urgency, "if you really wanted to get things done

you had to jump on a plane and fly over, there was nothing that could

make up for sitting in a room with people to both get across the

urgency and to ensure that communication among the team took place

to address any of the issues..."

2, 0, geographical!face-to-face, "if you really wanted to get things

done you had to jump on a plane and fly over, there was nothing that

could make up for sitting in a room with people to both get across the

urgency and to ensure that communication among the team took place to

address any of the issues..."

6.3.4 Visualisation as a Table

Table 1 illustrates the output from \ulqdaTable.

Table 1: List of QDA Codes

geographical urgency face-to-face

10

6.3.5 Visualisation as a Cloud

Table 1 illustrates the output from \ulqdaCloud.

Table 2: List of QDA Codes

FPGA HW HW attitude to risk HW bias HW fear of risk HW focus HW is fixed HW

reluctance to design change HW vs SW IM IP SQA SW focus SW influence

on System Arch SW is changeable SW models SW workarounds adherence to process adverse

aggressive schedules agile methods algorithmic software ambition approach to test bring in software

expertise early business model changeability of SW changing

market requirements co-location communication communications difficulties competitive

analysis competitiveness complexity complexity in SW control code complexity

risk confidence constraints consumer electronics control software cost of changing HW cost of

test cost of wrong HW cost-benefit of process cross-functional culture design

modelling dimensioning HW early prototype engineers over-simplify experience fabless face to

face false perception fluid specifications focus freedom to innovate friction

geographical geographical mitigation geographical more impact than

technical greatest impact gsd gsd mitigation hardware implementation importance of

cross-functional skills importance of face to face inadequate testing incidental is most

important incidental knowledge informal chats information sharing internalising keep SW model

in sync with HW lack of mixed design skills learning curve limitations of SW models management

market analysis market change market risk market window methodology mindset gap
mitigation moving SW into HW moving schedule moving software into hardware multi-disciplinary

new platform opportunity for HW change opportunity to change organisation overconfidence

perception of other discipline process product specification project inception realtime missing

from SW model reluctance to change requires hardware focus resource requirements resource usage

analysis risk risk mitigation schedule schedule impact social social familiarity

social risk social tools software specialisation specifying HW resources system resources system

understanding tapeout set by hardware team building technical technical determinism

technical language barrier techno-geographical split telecoms test code sharing testing HW

without final SW time to market tool problems tools underestimate learning curve unedited

validation value in test bench value of SW models value of reference platforms verification
verification risk verify SW without HW visibility weight of HW risk workaround

6.3.6 Visualisation as Graphs

Figure 1 shows the visualisation output possible from ulqda:

• figure 1(a) shows the image created using
\ulqdaGraph{flat}{neato,mathmode,

options={--graphstyle "scale=0.5,transform shape"}}

11

• figure 1(b) shows the image created using
\ulqdaGraph{net}{neato,mathmode,

options={--graphstyle "scale=0.5,transform shape"}}.

urgency

face− to− face

geographical

(a) Flat Graph

urgency

face− to− face

geographical

(b) Hierarchical Graph with Connections

Figure 1: Visualisation through GraphViz

Figure 2 shows a more complex visualisation generated from a more compre-
hensive set of coding.

12

newplatform

SWinfluenceonSystemArch

geographical

tools

resourcerequirements

telecoms

ambition

earlyprototype

fluidspecifications

movingSWintoHW

marketwindow

social

consumerelectronics

teambuilding

overconfidence

changingmarketrequirements

schedule

competitiveanalysis

costofchangingHW

fluidrequirements
implementation

importanceoffacetoface

businessmodel

changeabilityofSW

techno− geographicalsplit

visibility

technical

webtools

HWfearofrisk

communiction

lackofmixeddesignskills

risk

HWvsSW

multi− disciplinary
mindsetgap

complexity

perceptionofotherdiscipline

projectinception

SWischangeable

culture

communication

greatestimpact

hardware

importanceofcross− functionalskills

management

methodology

underestimatelearningcurve

specialisation

informalcommunication

verification

mitigation

inadequatetesting

process

confidence

constraints

software

engineersover − simplify

geographicalmitigation

aggressiveschedules

Figure 2: Complex Visualisation of Axial Coding Ontology

13

7 Implementation

7.1 Dependencies

We start be ensuring that the required packages are loaded when this file is loaded
as a package by LATEX.

1 〈∗package〉
2 \RequirePackage{multicol}

3 \RequirePackage{tikz}

4 % \iffalse

5 %% dot2texi.sty in CTAN doesn’t support the cache option yet

6 %% The SVN version does.

7 % \RequirePackage[cache]{dot2texi}

8 % \fi

9 \RequirePackage{dot2texi}

10 \usetikzlibrary{backgrounds,shapes,arrows,positioning}

11

12 〈/package〉

7.2 Highlighting Style

We next setup some default highlighting formatting defines. The user is free to
change the highlighting formatting through redefining \ulqdaHighlight.
13 〈∗package〉
14

15 \definecolor[named]{UlQda@lightblue}{rgb}{0.80,0.85,1}

16 \RequirePackage{soul}

17 \sethlcolor{UlQda@lightblue}

18

19 〈/package〉

7.3 Package Options

20 〈∗package〉
21 \newif\ifUlQda@debug \UlQda@debugfalse

22 \newif\ifUlQda@cache \UlQda@cachefalse

23 \newif\ifUlQda@cachepresent \UlQda@cachepresentfalse

24 \newif\ifUlQda@shellescape \UlQda@shellescapetrue

25 \newif\ifUlQda@MiKTeX \UlQda@MiKTeXfalse

26 \newif\ifUlQda@active \UlQda@activefalse

27 \newif\ifUlQda@counts \UlQda@countsfalse

28

29 \DeclareOption{active}{\UlQda@activetrue}

30 \DeclareOption{debug}{\UlQda@debugtrue}

31 \DeclareOption{cache}{\UlQda@cachetrue}

32 \DeclareOption{nocache}{\UlQda@cachefalse}

33 \DeclareOption{shell}{\UlQda@shellescapetrue}

34 \DeclareOption{noshell}{\UlQda@shellescapefalse}

35 \DeclareOption{MiKTeX}{\global\UlQda@MiKTeXtrue}

14

36 \DeclareOption{counts}{\global\UlQda@countstrue}

37

38 \DeclareOption*{%

39 \PackageWarning{ulqda}{Unknown option ‘\CurrentOption’}%

40 }

41

42 \ExecuteOptions{shell}

43 \ProcessOptions\relax

44

45 \ifUlQda@counts

46 \def\UlQda@counts{--number }

47 \else

48 \def\UlQda@counts{ }

49 \fi

50

51 〈/package〉

7.4 Testing the Shell Escape Mechanism

Needs to work on both Unix-type platforms and on MiKTEX on Microsoft Win-
dows.
52 〈∗package〉
53 %% test if shell escape really works

54 \ifUlQda@shellescape

55 \def\tmpfile{/tmp/shellEscapeTest-\the\year\the\month\the\day-\the\time}

56 \immediate\write18{\ifUlQda@MiKTeX rem >"\tmpfile" \else touch \tmpfile \fi}

57 \IfFileExists{\tmpfile}{

58 \UlQda@shellescapetrue

59 \immediate\write18{\ifUlQda@MiKTeX del "\tmpfile" \else rm -f \tmpfile \fi}

60 }{\UlQda@shellescapefalse}

61 \fi

62

63 \ifUlQda@shellescape

64 \ifUlQda@debug

65 \PackageInfo{ulqda}{TeX Shell escape enabled.}

66 \fi

67 \else

68 \PackageWarningNoLine{ulqda} {TeX Shell escape not enabled.\MessageBreak%

69 Manually process the CSV output with ulqda.pl}

70 \fi

71

72 〈/package〉

7.5 Active Macro Implementation

\ulqdaHighlight The most basic macro is a style macro - to format the typeset text, indicating
that it has been coded, and also to place the codes themselves in the margin.
73 〈∗package〉
74 \newcommand{\ulqdaHighlight}[2]{%

15

75 \hl{\protect\ul{#2}}%

76 \marginpar%

77 {\raggedright\hbadness=10000\tiny\it%

78 \hl{#1}

79 \par}%

80 %\par%

81 }

82

83 〈/package〉

We’ll also create \ulQda, a vanity macro to typeset the ulqda package name,
in the TEX tradition.

\ulQda

84 〈∗package〉
85 \newcommand{\ulQda}{\textsf{ul\kern -.075em\lower .3ex\hbox {\protect\emph{q}}da}}

86

87 〈/package〉

Next, we need to determine if the package is intended to be active for this
LATEX processing run or not. This is essentially a big switch around the majority
of the package definitions.
88 〈∗package〉
89 \ifUlQda@active

90 〈/package〉

\ulqdaCode We now create a macro, \ulqdaCode to perform the actual coding of the raw text.
This macro, when invoked, will invoke the highlighting macro \ulqdaHighlight
and also conditionally invoke the package private macro \UlQda@ListIt to output
coded text to a comma separate values (.csv) cache file.

This is hooked (presently) to \begin{document}, and contains some condi-
tional code to decide if caching is enabled, and if so, if the cache is present or
not.
91 〈∗package〉
92 %

93 %

94 \AtBeginDocument{%

95 \typeout{ulqda: Loaded - 2009/06/11 v1.1 Qualitative Data Analysis package}

¡/package¿
If caching is enabled, the .csv file will only be generated if necessary. This is

because the .csv generation can be quick slow - particularly when dealing with a
number of large portions of text, each having multiple codes.
96 %

97 〈∗package〉
98 \ifUlQda@cache

99 \IfFileExists{\jobname.csv} %

100 {

101 \ifUlQda@debug

16

102 \typeout{ulqda: QDA cache file \jobname.csv found}

103 \fi

104 \UlQda@cachepresenttrue

105 }

106 {

107 \ifUlQda@debug

108 \typeout{ulqda: QDA cache file \jobname.csv not found}

109 \fi

110 \UlQda@cachepresentfalse

111 }

112 \else

113 \ifUlQda@debug

114 \typeout{ulqda: caching disabled}

115 \fi

116 \UlQda@cachepresentfalse

117 \fi

118 〈/package〉
Without caching enabled, the .csv file will be generated every run.
If a cache file is detected and shell escape is enabled, the .csv cache will be

processed on demand: by \ulqdaGraph to generate GraphViz .dot file outputs, by
\ulqdaCloud to generate tag cloud style maps, and by \ulqdaTable to generate
a multicolumn list of codes.

In this case, the \ulqdaCode macro will not cause the cache file to update, but
instead will only perform a typesetting function.

119 〈∗package〉
120

121 % Code macro

122 \ifUlQda@cachepresent

123 \newcommand{\ulqdaCode}[2]{\ulqdaHighlight{#1}{#2}}

124 〈/package〉

Otherwise, any occurrence of the \ulqdaCode macro will update the cache file
for the run.

125 〈∗package〉
126 \else

127 \ifUlQda@debug

128 \typeout{ulqda: Creating QDA cache file \jobname.csv} %

129 \fi

130 \newwrite\ulqdaCodeFile %

131 \immediate\openout\ulqdaCodeFile=\jobname.csv %

132 \immediate\write\ulqdaCodeFile{Page Number, Section, Code, Text} %

133

134 〈/package〉

The following macro outputs the coding to the code file.

135 〈∗package〉
136 \def\UlQda@ListIt#1[#2,{%

137 \ifUlQda@debug %

17

138 \typeout{ulqda: Coding "#2" as "#1" on page \thepage, section \thesection}

139 \fi %

140 \immediate\write\ulqdaCodeFile{\thepage, \thesection, #2, "#1"}

141 〈/package〉

It also causes the code to be added to the index for the document, which is
useful.

142 〈∗package〉
143 \index{#2} %

144 \@ifnextchar]% Look ahead one token.

145 {\eatthesquarebracket}% End of list.

146 {\UlQda@ListIt{#1}[}% Process rest of list.

147 }

148 \def\eatthesquarebracket]{} % Gobble the square bracket.

149 %

150 % Coding macro

151 \newcommand{\ulqdaCode}[2]{\ulqdaHighlight{#1}{#2}\UlQda@ListIt{#2}[#1,]} %

152 \fi

153 } % end of \AtBeginDocument

154

155 〈/package〉

\ulqdaSetSectFilter \ulqdaSetSectFilter enables filtering of CSV processing by section label.
156 〈∗package〉
157 \newcommand{\UlQda@FirstOfTwo}[1]{

158 \ifx#1\UlQda@MyUndefinedMacro

159 ?\typeout{ulqda: undefined reference, please re-run}

160 \else

161 \expandafter\@firstoftwo#1

162 \fi}

163 \newcommand{\UlQda@RefToSectNum}[1]{

164 \expandafter \ifx\csname r@#1\endcsname\relax

165 ?\typeout{ulqda: undefined reference, please re-run}

166 \else

167 \expandafter\UlQda@FirstOfTwo\csname r@#1\endcsname

168 \fi}

169 〈/package〉
Now we start the actual filtering work. First, we delete any old files from

previous builds. Next, we create a macro which will be used to pass a command
line argument selecting the appropriate filtering to ulqda.pl.

170 〈∗package〉
171 \def\UlQda@filter{}

172 \newcommand{\ulqdaSetSectFilter}[1]{

173 \ifUlQda@shellescape

174 \immediate\write18{\ifUlQda@MiKTeX del \else rm -f -- \fi \jobname_net.dot}

175 \immediate\write18{\ifUlQda@MiKTeX del \else rm -f -- \fi \jobname_flat.dot}

176 \immediate\write18{\ifUlQda@MiKTeX del \else rm -f -- \fi \jobname_table.tex}

177 \fi

178 \def\UlQda@filter{--filter \UlQda@RefToSectNum{#1}}

18

179 }

180 〈/package〉

\ulqdaClearSectFilter We also need to be able to clear any previously configured filter, and this is what
the following macro does for us.

181 〈∗package〉
182 \newcommand{\ulqdaClearSectFilter}{\def\UlQda@filter{}}

183 〈/package〉

\ulqdaGraph It is typical to want to present your coded data visually in a number of dif-
ferent ways, perhaps focusing on a particular sub-theme if the entire ontology
is too cumbersome. However, I have provided a sample macro, \ulqdaGraph,
which will support the generation of an overall ontology graph through the use of
dot2texi.sty.

\ulqdaGraph uses the power of \csname to expand to either \UlQda@GraphNet
or \UlQda@GraphFlat, depending on its first argument.

184 〈∗package〉
185 \newcommand{\ulqdaGraph}[2]{\expandafter\csname UlQda@Graph#1\endcsname{#2}}

186 \newcommand\UlQda@Graphflat[1]{\UlQda@GraphFlat{#1}}

187 \newcommand\UlQda@Graphnet[1]{\UlQda@GraphNet{#1}}

188 \newcommand{\UlQda@GraphVizFileName}{}

189 \newsavebox{\UlQda@GraphSaveBox}

190 \newcommand{\UlQda@GraphNet}[1]{%

191 \renewcommand{\UlQda@GraphVizFileName}{\jobname_net.dot}%

192 〈/package〉
If a cache file is detected and shell escape is enabled, the .csv cache will be

processed on demand by \UlQda@GraphNet to generate GraphViz .dot file output.

193 〈∗package〉
194 \ifUlQda@cachepresent

195 \ifUlQda@shellescape

196 \ifUlQda@debug

197 \typeout{ulqda: Converting .csv to hierarchical GraphViz dot file}

198 \fi

199 \immediate\write18{ulqda.pl --graphnet \UlQda@filter \UlQda@counts

200 -- \jobname.csv \jobname_net.dot}

201 \fi

202 \fi

203

204 \UlQda@DoGraph{#1}%

205 }

206 \newcommand{\UlQda@GraphFlat}[1]{%

207 \renewcommand{\UlQda@GraphVizFileName}{\jobname_flat.dot}%

208 〈/package〉

If a cache file is detected and shell escape is enabled, the .csv cache will be
processed on demand by \UlQda@GraphFlat to generate GraphViz .dot file output.

209 〈∗package〉
210 \ifUlQda@cachepresent

19

211 \ifUlQda@shellescape

212 \ifUlQda@debug

213 \typeout{ulqda: Converting .csv to flat GraphViz dot file}

214 \fi

215 \immediate\write18{ulqda.pl --graphflat \UlQda@filter \UlQda@counts

216 -- \jobname.csv \jobname_flat.dot}

217 \fi

218 \fi

219

220 \UlQda@DoGraph{#1}%

221 }

222

223 〈/package〉

The following package internal macro, \UlQda@DoGraph, actually enacts the
graph generation.

224 〈∗package〉
225 \newcommand{\UlQda@DoGraph}[1]{

226 \IfFileExists{\UlQda@GraphVizFileName}{

227 \ifUlQda@shellescape

228 \begin{lrbox}{\UlQda@GraphSaveBox}

229 〈/package〉

The next few lines are a hack to enable dot2texi.sty to work with an external
.dot file1.

230 〈∗package〉
231 \stepcounter{dtt@fignum}

232 \setkeys{dtt}{#1}

233 \immediate\write18{cp "\UlQda@GraphVizFileName" "\dtt@figname.dot"}

234 \dottotexgraphicsinclude

235 〈/package〉

Now we finish the \ulqdaGraph command.

236 〈∗package〉
237 \end{lrbox}

238 \framebox{\usebox{\UlQda@GraphSaveBox}} \par

239 \else

240 \typeout{ulqda: shell escape not enabled}

241 \typeout{ulqda: unable to process \UlQda@GraphVizFileName}

242 \fi

243 }

244 }

245 〈/package〉

We now create a \ulqdaTable macro – a command to process the table of
codes. It doesn’t do terribly much, but it is there because it is useful and concep-
tually consistent with the graph macros.

1I have suggested this to Kjell Magne Fauskes, the dot2texi.sty author, and he intends to
include such a feature natively in a future version.

20

\ulqdaTable

246 〈∗package〉
247 \newcommand{\ulqdaTable}{

248 \IfFileExists{\jobname_table.tex}{

249 \input{\jobname_table.tex}

250 }{

251 〈/package〉
252 % \end{macrocode}

253 % If a cache file is detected and shell escape is enabled, the~.csv cache

254 % will be processed on demand by |\ulqdaTable| to generate

255 % a multicolumn list of codes.

256 % \begin{macrocode}

257 〈∗package〉
258 \ifUlQda@cachepresent

259 \ifUlQda@shellescape

260 \ifUlQda@debug

261 \typeout{ulqda: Converting .csv to TeX table}

262 \fi

263 \immediate\write18{ulqda.pl --list \UlQda@filter \UlQda@counts

264 -- \jobname.csv \jobname_table.tex}

265 \fi

266 \fi

267 \IfFileExists{\jobname_table.tex}{

268 \input{\jobname_table.tex}

269 }

270 }

271 }

272 〈/package〉

Next, we create a \ulqdaCloud macro – a command to process the table of
codes and create a tag cloud style visualisation.

\ulqdaCloud

273 〈∗package〉
274 \newcommand{\ulqdaCloud}{

275 \IfFileExists{\jobname_cloud.tex}{

276 \input{\jobname_cloud.tex}

277 }{

278 〈/package〉
279 % \end{macrocode}

280 % If a cache file is detected and shell escape is enabled, the~.csv cache

281 % will be processed on demand by |\ulqdaCloud| to generate the cloud.

282 % \begin{macrocode}

283 〈∗package〉
284 \ifUlQda@cachepresent

285 \ifUlQda@shellescape

286 \ifUlQda@debug

287 \typeout{ulqda: Converting .csv to TeX cloud}

288 \fi

289 \immediate\write18{ulqda.pl --cloud \UlQda@filter \UlQda@counts

21

290 -- \jobname.csv \jobname_cloud.tex}

291 \fi

292 \fi

293 \IfFileExists{\jobname_cloud.tex}{

294 \input{\jobname_cloud.tex}

295 }

296 }

297 }

298 〈/package〉

7.6 Inactive Macro Stubs

If the package is not intended to be active, we need to create stub definitions for
the macros that the package provides, so that document runs where the package
is not active will succeed.

299 〈∗package〉
300 \else % UlQda@activefalse

301 〈/package〉

\ulqdaTable

302 〈∗package〉
303 \newcommand{\ulqdaTable}{}

304 〈/package〉

\ulqdaCloud

305 〈∗package〉
306 \newcommand{\ulqdaCloud}{}

307 〈/package〉

\ulqdaGraph

308 〈∗package〉
309 \newcommand{\ulqdaGraph}[2]{}

310 〈/package〉

\ulqdaCode

311 〈∗package〉
312 \newcommand{\ulqdaCode}[2]{#2}

313 〈/package〉

\ulqdaSetSectFilter

314 〈∗package〉
315 \newcommand{\ulqdaSetSectFilter}[1]{}

316 〈/package〉

\ulqdaSetSectFilter

317 〈∗package〉
318 \newcommand{\ulqdaClearSectFilter}{}

319 〈/package〉

22

And finally close the conditional switch on whether active or not.
320 〈∗package〉
321 \fi

322 〈/package〉

23

References

[1] M. B. Miles and A. M. Huberman, Qualitative Data Analysis: An Expanded
Sourcebook. 2455 Teller Road, Thousand Oaks, California 91320, USA: Sage
Publications, Inc., 1994. ISBN-10: 0-8039-5540-5.

[2] B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory: Strategies
for Qualitative Research. 200 Saw Mill River Road, Hawthorne, New York
10532, USA: Aldine De Gruyter, 1967. ISBN-10: 0-202-30260-1.

[3] A. Strauss and J. Corbin, eds., Grounded Theory in Practice. 2455 Teller Road,
Thousand Oaks, California 91320, USA: Sage Publications, 1997. ISBN-10: 0-
7619-0748-3.

[4] E. R. Gansner and S. C. North, “An open graph visualization system and
its applications to software engineering,” Software - Practice and Experience,
vol. 30, pp. 1203–1233, 1999.

[5] K. M. Fauske, “dot2text – A GraphViz to LATEX converter,” 2006. available:
http://www.fauskes.net/code/dot2tex/ [accessed 2009-03-02 17h31.

[6] B. Appleton, “The LoRD Principle – Locality breeds Maintainability,” Port-
land Patterns Repository wiki, 1997. available: http://c2.com/cgi/wiki?
LocalityOfReferenceDocumentation [accessed 2009-05-14 10h03].

[7] J. Hefferon, “LATEX goes with the flow,” The PracTEX Journal, no. 1,
2008. available http://www.tug.org/pracjourn/2008-1/hefferon/ [ac-
cessed 2009-03-02 17h51].

24

http://www.fauskes.net/code/dot2tex/
http://c2.com/ppr/
http://c2.com/ppr/
http://c2.com/cgi-bin/wiki?WelcomeVisitors
http://c2.com/cgi/wiki?LocalityOfReferenceDocumentation
http://c2.com/cgi/wiki?LocalityOfReferenceDocumentation
http://www.tug.org/pracjourn/2008-1/hefferon/

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\@firstoftwo 161
\@ifnextchar 144

A
\AtBeginDocument 94, 153

C
\CurrentOption 39

D
\DeclareOption 29–36, 38
\definecolor 15
\dottotexgraphicsinclude

. 234
\dtt@figname 233

E
\eatthesquarebracket

. 145, 148
\end 237, 252, 279
\ExecuteOptions . . . 42

F
\framebox 238

I
\IfFileExists

. . . 57, 99, 226,
248, 267, 275, 293

\ifUlQda@active . 26, 89
\ifUlQda@cache . . 22, 98
\ifUlQda@cachepresent

. 23, 122,
194, 210, 258, 284

\ifUlQda@counts . 27, 45
\ifUlQda@debug

21, 64, 101, 107,
113, 127, 137,
196, 212, 260, 286

\ifUlQda@MiKTeX . . .
25, 56, 59, 174–176

\ifUlQda@shellescape

. 24,
54, 63, 173, 195,
211, 227, 259, 285

M
\marginpar 76
\MessageBreak 68

N
\newcommand . . 74, 85,

123, 151, 157,
163, 172, 182,
185–188, 190,
206, 225, 247,
274, 303, 306,
309, 312, 315, 318

\newif 21–27
\newsavebox 189
\newwrite 130

P
\PackageInfo 65
\PackageWarning . . . 39
\PackageWarningNoLine

. 68
\ProcessOptions . . . 43

R
\raggedright 77
\renewcommand . 191, 207

T
\textsf 85

U
\ulQda 84
\UlQda@activefalse . 26
\UlQda@activetrue . 29
\UlQda@cachefalse 22, 32
\UlQda@cachepresentfalse

. 23, 110, 116
\UlQda@cachepresenttrue

. 104
\UlQda@cachetrue . . 31
\UlQda@counts 46, 48,

199, 215, 263, 289
\UlQda@countsfalse . 27
\UlQda@countstrue . 36
\UlQda@debugfalse . 21

\UlQda@debugtrue . . 30
\UlQda@DoGraph

. . . . 204, 220, 225
\UlQda@filter

. 171, 178, 182,
199, 215, 263, 289

\UlQda@FirstOfTwo .
. 157, 167

\UlQda@GraphFlat . .
. 186, 206

\UlQda@Graphflat . . 186
\UlQda@GraphNet 187, 190
\UlQda@Graphnet . . . 187
\UlQda@GraphSaveBox

. . . . 189, 228, 238
\UlQda@GraphVizFileName

. . . . 188, 191,
207, 226, 233, 241

\UlQda@ListIt
. . . . 136, 146, 151

\UlQda@MiKTeXfalse . 25
\UlQda@MiKTeXtrue . 35
\UlQda@MyUndefinedMacro

. 158
\UlQda@RefToSectNum

. 163, 178
\UlQda@shellescapefalse

. 34, 60
\UlQda@shellescapetrue

. 24, 33, 58
\ulqdaClearSectFilter

. 181, 318
\ulqdaCloud . . . 273, 305
\ulqdaCode 91, 311
\ulqdaCodeFile

. . . . 130–132, 140
\ulqdaGraph . . . 184, 308
\ulqdaHighlight . . .

. 73, 123, 151
\ulqdaSetSectFilter

. . . . 156, 314, 317
\ulqdaTable . . . 246, 302
\usebox 238
\usetikzlibrary . . . 10

25

Change History

v1.0
General: Initial Version. 1

26

	Introduction
	What is Qualitative Data Analysis?
	What does this package do?
	Why is this package named ul.3exqda?
	Acknowledgements
	Legal Mumbo-Jumbo

	Prerequisites
	Known Limitations and Issues
	docstrip woes - in this very document!

	Why use LaTeX for QDA Automation?
	Installation
	Usage
	Options
	Advanced Options Usage

	Macros
	Example
	Coding Example
	Typeset Example
	CSV Cache File
	Visualisation as a Table
	Visualisation as a Cloud
	Visualisation as Graphs

	Implementation
	Dependencies
	Highlighting Style
	Package Options
	Testing the Shell Escape Mechanism
	Active Macro Implementation
	Inactive Macro Stubs

