
Streee t

t

chy
v0.1

S. Lurp slurper04@gmail.com

1 Introduction

The Stretchy package (stylized as Streee t

t

chy) is a package for creating “stretched” symbols. These are symbols

which can be arbitrarily stretched in some way, for example the e and t in the Stretchy logo itself. Stretchy is
a plain-TEX package, but works with LATEX as well. Stretchy works with both pdfTEX and LuaTEX.

Stretchy only currently supports the Computer Modern Roman 10pt font. Further support may or may not
be added in the future.

Stretchy works by injecting PDF code directly into the underlying file in order to draw shapes that connect
parts of preexisting glyphs. For example, take the Stretchy logo:

Streee t

t

chy

the e is made from two horizontal halves of the e glyph, connected by two bars drawn using PDF code, via
\pdfliterals. The PDF code is injected so that the added graphical elements line up at roughly the correct
placement, but this is done through measurements of the glyph, not by studying its source. This generally
gives good results, but due to the fact that Stretchy mixes PDF path and glyph painting, PDF consumers do
not always produce visually pleasing results at all levels of magnification. This is unavoidable (when using the
method used by Stretchy) unfortunately.

2 Stretchy Symbols

Stretchy provides the stretchy symbols listed below.

2.1 Repeated symbols

Stretchy provides methods of repeating symbols, while also adding stretched material to it. These symbols are:

\strtyint {〈N〉}{〈sup〉}{〈sub〉}
\strtyintlimits {〈N〉}{〈sup〉}{〈sub〉}: This prints N integral signs, with sup and sub as superscript and

subscript material, respectively. \strtyint differs from \strtyintlimits regarding where the limits are
placed. The former places them next to the symbols, the latter above and below.

For example, \strtyint{5}{}{{\bb R}^5} and \strtyintlimits{5}{}{{\bb R}^5} prints∫∫∫∫∫
R5

∫∫∫∫∫
R5

\strtyoint {〈N〉}{〈sup〉}{〈sub〉}
\strtyointlimits {〈N〉}{〈sup〉}{〈sub〉}: This prints N integral signs with a circle stretched out painted on

them. sup and sub are the superscript and subscript material respectively. \strtyoint differs from
\strtyointlimits regarding where the limits are placed. The former places them next to the symbols,
the latter above and below.

For example, \strtyoint{5}{}{\partial S} and \stryointlimits{5}{}{\partial S} prints∫∫∫∫∫
∂S

∫∫∫∫∫
R5

\strtysqint {〈N〉}{〈sup〉}{〈sub〉}
\strtysqintlimits {〈N〉}{〈sup〉}{〈sub〉}: This prints N integral signs with a square stretched out painted on

them. sup and sub are the superscript and subscript material respectively. \strtysqint differs from

1

\strtysqintlimits regarding where the limits are placed. The former places them next to the symbols,
the latter above and below.

For example, \strtysqint{5}{}{\partial S} and \strysqintlimits{5}{}{\partial S} prints∫∫∫∫∫
∂S

∫∫∫∫∫
R5

\strtyrsqint {〈N〉}{〈sup〉}{〈sub〉}
\strtyrsqintlimits {〈N〉}{〈sup〉}{〈sub〉}: This prints N integral signs with a rounded square stretched out

painted on them. sup and sub are the superscript and subscript material respectively. \strtyrsqint

differs from \strtyrsqintlimits regarding where the limits are placed. The former places them next
to the symbols, the latter above and below.

For example, \strtyrsqint{5}{}{\partial S} and \stryrsqintlimits{5}{}{\partial S} prints∫∫∫∫∫
∂S

∫∫∫∫∫
R5

\strtytriint {〈N〉}{〈sup〉}{〈sub〉}
\strtytriintlimits {〈N〉}{〈sup〉}{〈sub〉}: This prints N integral signs with a triangle stretched out painted

on them. sup and sub are the superscript and subscript material respectively. \strtytriint differs from
\strtytriintlimits regarding where the limits are placed. The former places them next to the symbols,
the latter above and below.

For example, \strtytriint{5}{}{\partial S} and \strytriintlimits{5}{}{\partial S} prints∫∫∫∫∫
∂S

∫∫∫∫∫
R5

\pii {〈N〉}: Prints π with N legs. This can be used for fractions of π. That is, \pii{N} corresponds to the
value 2π/N . For example, \pii{5} gives ππ

2.2 Stretched symbols

Stretchy provides methods of stretching symbols, allowing them to grow arbitrarily large. These symbols are:

\xint {〈sup〉}{〈sub〉}{〈material〉}: This draws an integral sign stretched to match the height and depth of
material with superscript and subscript material corresponding to sup and sub respectively.

For example \xint {-3}{-2}{\sum_{n=1}^\infty n^x\,dx} produces

∫

−3∫
−2

∞∑
n=1

nx dx

\xhsum {〈sup〉}{〈sub〉}
\xvsum {〈sup〉}{〈sub〉}{〈material〉}
\xhvsum {〈sup〉}{〈sub〉}{〈material〉}:

• \xhsum paints a summation symbol stretched horizontally to match the width of its limits;

• \xvsum paints a summation symbol stretched vertically to match the height and depth of material
with the specified limits;

• \xhvsum paints a summation symbol stretched both horizontally (to match the width of its limits)
and vertically (to match the height and depth of material).

For example,

\xhsum {}{n\in\{2a+3b\;\mid\;a,b\in{\bb Z}\}}{1\over n}

\xvsum {}{n\in\{2a+3b\;\mid\;a,b\in{\bb Z}\}}{{1\over n}}

\xhvsum {}{n\in\{2a+3b\;\mid\;a,b\in{\bb Z}\}}{{1\over n}}

2

∑ ∑
n∈{2a+3b | a,b∈Z}

1

n
;

∑∑
n∈{2a+3b | a,b∈Z}

1

n
;

∑∑
n∈{2a+3b | a,b∈Z}

1

n

\xhbigcup {〈sup〉}{〈sub〉}
\xvbigcup {〈sup〉}{〈sub〉}{〈material〉}
\xhvbigcup {〈sup〉}{〈sub〉}{〈material〉}:

• \xhbigcup paints a big-cup symbol stretched horizontally to match the width of its limits;

• \xvbigcup paints a big-cup symbol stretched vertically to match the height and depth of material
with the specified limits;

• \xhvbigcup paints a big-cup symbol stretched both horizontally (to match the width of its limits)
and vertically (to match the height and depth of material).

For example,

\xhbigcup{}{f\in L^2(\mu),\int f>0}\left\{{1\over f},f\right\};\qquad

\xvbigcup{}{f\in L^2(\mu),\int f>0}{\left\{{1\over f},f\right\}};\qquad

\xhvbigcup{}{f\in L^2(\mu),\int f>0}{\left\{{1\over f},f\right\}}

⋃ ⋃
f∈L2(µ),

∫
f>0

{
1

f
, f

}
;

⋃⋃
f∈L2(µ),

∫
f>0

{
1

f
, f

}
;

⋃ ⋃⋃ ⋃
f∈L2(µ),

∫
f>0

{
1

f
, f

}

\xhbigcap {〈sup〉}{〈sub〉}
\xvbigcap {〈sup〉}{〈sub〉}{〈material〉}
\xhvbigcap {〈sup〉}{〈sub〉}{〈material〉}:

• \xhbigcap paints a big-cap symbol stretched horizontally to match the width of its limits;

• \xvbigcap paints a big-cap symbol stretched vertically to match the height and depth of material
with the specified limits;

• \xhvbigcap paints a big-cap symbol stretched both horizontally (to match the width of its limits)
and vertically (to match the height and depth of material).

For example,

\xhbigcap{}{n=1,2,3,\dots}\left[0,{1\over n}\right]

\xvbigcap{}{n=1,2,3,\dots}{\left[0,{1\over n}\right]}

\xhvbigcap{}{n=1,2,3,\dots}{\left[0,{1\over n}\right]}

⋂ ⋂
n=1,2,3,...

[
0,

1

n

]
;

⋂⋂
n=1,2,3,...

[
0,

1

n

]
;

⋂ ⋂⋂ ⋂
n=1,2,3,...

[
0,

1

n

]

\xhprod {〈sup〉}{〈sub〉}
\xvprod {〈sup〉}{〈sub〉}{〈material〉}
\xhvprod {〈sup〉}{〈sub〉}{〈material〉}:

• \xhprod paints a product symbol stretched horizontally to match the width of its limits;

• \xvprod paints a productsymbol stretched vertically to match the height and depth of material with
the specified limits;

• \xhvprod paints a product symbol stretched both horizontally (to match the width of its limits)
and vertically (to match the height and depth of material).

For example,

3

\xhprod{}{n=1,2,3,\dots}\left[0,{1\over n}\right]

\xvprod{}{n=1,2,3,\dots}{\left[0,{1\over n}\right]}

\xhvprod{}{n=1,2,3,\dots}{\left[0,{1\over n}\right]}

∏ ∏
n=1,2,3,...

[
0,

1

n

]
;

∏∏
n=1,2,3,...

[
0,

1

n

]
;

∏ ∏∏ ∏
n=1,2,3,...

[
0,

1

n

]

2.3 Stretchy Logo

Stretchy also provides macros for producing its logo. To produce the logo itself, Stretchy provides the macro
\stretchylogo:

Streee t

t

chy

To produce the e and t in the Stretchy logo, Stretchy provides the macros \strty@e and \strty@t, whose
usages are

\strty@e {〈width〉}
\strty@t {〈width〉}{〈height+depth〉}

For example,

\strty@e{15pt}

\strty@t{15pt}{10pt}

e ee tt

3 Stretchy Internals

Stretchy provides various macros for creating your own stretchy symbols. These all require knowledge regarding
the usage of PDF path painting operators. For an in-depth explanation on PDFs and the usage of pdfTEX
primitives, you may consult my article here.

3.1 Stretchy Coordinates

All Stretchy painting commands should utilize the Stretchy coordinate system. This is accessed and manipulated
via the following macros:

• \strty@p;

• \strty@pd;

• \strty@trans;

• \strty@setpttrans.

Essentially, all these macros do is apply a transformation to the coordinates provided. That is, if you specify
a line from (x0, y0) to (x1, y1), Stretchy will transform these coordinates according to the Current Stretchy
Transformation (CST) TS , and draw a line from TS(x0, y0) to TS(x1, y1). The idea is similar for cubic Bézier
curves (the start, end, and control points are transformed via T).

In order to facilitate this, you must pass the coordinates to \strty@p. That is, instead of doing something like

1 0 0 m
2 10 0 l
3 S

You should do

1 \strty@p{0}{0} m

2 \strty@p{10}{0} l

3 S

The CST is specified by \strty@trans, which is a macro accepting 2 parameters and must expand to two
groups. For example,

4

https://github.com/Shlurp/pdfTeX-explanation/blob/master/pdftex-explanation.pdf

1 \def\strty@trans#1#2{{-#2}{#1}}

will rotate all points by 90 degrees.

Stretchy provides some useful macros for basic arithmetic operations.

• \strty@nopt computes a dimension expression, and expands to the result without the trailing pt. For
example \strty@nopt{1pt+2pt} will expand to 3.

• \strty@add accepts two parameters (numbers), and expands to their sum.

• \strty@mult accepts two parameters (numbers), and expands to their product.

The definitions of \strty@add and \strty@mult are simply

strty-utils.tex

9 \bgroup\lccode‘?=‘p\lccode‘!=‘t

10 \lowercase{\egroup\def\strty@rmpt#1?!{#1}}

The definition of \strty@setpttrans is simply

strty-utils.tex

61 }}

62

63 \def\strty@pttrans{0.996264 0 0 0.996264 0 0 cm}

that is, it simply multiplies each component by \strty@ptm, which is defined to be .996264 (the ratio between
TEX and PDF pts). Let us define this transformation to be Tpt .

\strty@pd is a macro accepting four parameters:

\strty@pd {〈x〉}{〈y〉}{〈dx〉}{〈dy〉}
it transforms the point (x, y) to TS(x, y) + (dx, dy) where dx, dy are dimensions. This is useful e.g. in \sqr-

tyrsqint, where the rounded edges are a set dimension, and thus the vertical edges must be offset by a set
dimension.

3.2 Stretchy Utilities

In strty-utils.tex, Stretchy defines some useful utilities. Most of these are internal to Stretchy or were
discussed previously, but we take the time to discuss one: \strty@scalebox. This accepts two parameters:

\strty@scalebox {〈scale〉}{〈material〉}
and scales material by scale. For example \strty@scalebox{2}{\stretchylogo} will produce

Streee t

t

chy

3.3 Repeated Symbols

In strty-repeatedsyms.tex, Stretchy defines all the repeated symbols (listed above) as well as some useful
auxillary macros.

\strty@circle {x}{y}{r}: This expands to PDF code for drawing a circle centered at (x, y) (dimensions, not
affected by the CST) with a radius of r (not a dimension). The axis points of the circle end up being

• right: TS(r, 0) + (x, y);

• left: TS(−r, 0) + (x, y);

• top: TS(0, r) + (x, y);

• bottom: TS(0,−r) + (x, y).

In order to draw the circle, Stretchy draws four cubic Bézier curves. The value \strty@cd determines
the distance of the control points from the axis points of the circle.

\strty@repeatedsum {〈name〉}{〈symbol〉}{〈kerning〉}: This defines a macro of name name which accepts a
single parameter N , and paints the symbol symbol N times with kerning placed between subsequent
symbols. For example,

5

strty-repeatedsyms.tex

61 \strty@repeatedsym{strty@dint@sym}{\displaystyle\int}{\mkern-10mu}

62 \strty@repeatedsym{strty@tint@sym}{\textstyle\int}{\mkern-7mu}

defines the two variants of \strtyint and \strtyintlimits (one for display math and the other
for textstyle math). This defines the macros \strty@dint@sym and \strty@tint@sym. For example,
\strty@dint@sym{5} paints ∫∫∫∫∫

\strty@extensible {〈name〉}{〈bg code〉}{〈fg code〉}{〈symbol〉}{〈dx〉}{〈dy〉}{〈kerning〉}: This defines a macro
of name name which accepts a single parameter N and paints the symbol symbol N times with kerning
placed between subsequent symbols. bg code is PDF code placed before painting the symbols, and fg code
is PDF code placed after painting the symbols.

If the resulting width of painting N symbols is w, then we define TS to be

TS : (x, y) 7→
(
x(w + dx)

2
, y · dy

)
that is, TS stretches the x-axis by a factor of w+dx

2 and the y-axis by a factor of dy.

For example, \strty@dsqint@sym is the symbol for \strtysqint in display math, and is defined like
so:

strty-repeatedsyms.tex

124 \strty@extensible{strty@dsqint@sym}{}{

125 q

126 .5 w

127 1 j 1 J

128 \strty@p{-1}{1} m

129 \strty@p{1}{1} l

130 \strty@p{1}{-1} l

131 \strty@p{-1}{-1} l

132 s

133 Q

134 }{\displaystyle\int}{-2pt}{4pt}{\mkern-10mu}

\strty@createoplims \〈macro〉{nolim sup kern}{nolim sub kern}{lim sup kern}{lim sub kern}:
This defines two macros, \macro@nolim and \macro@lim which accept three arguments each, N , sup and
sub. These then pass N to \macro (which is a repeating macro, e.g. defined by \strty@extensible),
and place sup and sub in the super- and subscripts, with kerning according to the parameters given.

For example, the definition of \strtyint and \strtyintlimits is

strty-repeatedsyms.tex

61 \strty@repeatedsym{strty@dint@sym}{\displaystyle\int}{\mkern-10mu}

62 \strty@repeatedsym{strty@tint@sym}{\textstyle\int}{\mkern-7mu}

63 \strty@createoplims\strty@dint@sym{0mu}{-12mu}{12mu}{-15mu}

64 \strty@createoplims\strty@tint@sym{0mu}{-7mu}{7mu}{-7mu}

65

66 \def\strtyint#1#2#3{%

67 \mathchoice%

68 {\strty@dint@sym@nolim{#1}{#2}{#3}}%

69 {\strty@tint@sym@nolim{#1}{#2}{#3}}%

70 {\strty@tint@sym@nolim{#1}{#2}{#3}}%

71 {\strty@tint@sym@nolim{#1}{#2}{#3}}%

72 }

73

74 \def\strtyintlimits#1#2#3{%

75 \mathchoice%

6

strty-repeatedsyms.tex

76 {\strty@dint@sym@lim{#1}{#2}{#3}}%

77 {\strty@tint@sym@lim{#1}{#2}{#3}}%

78 {\strty@tint@sym@lim{#1}{#2}{#3}}%

79 {\strty@tint@sym@lim{#1}{#2}{#3}}%

80 }

(1) lines 61 and 62 define the symbols;

(2) lines 63 and 64 define the kerning of the super and subscripts;

(3) the rest define the actual macros.

3.4 Stretched Symbols

Stretchy provides the following auxillary macros for creating stretched symbols.

\strty@hstretch {〈name〉}{〈left〉}{〈right〉}{〈code〉}: This defines a macro named name which accepts a pa-
rameter w, and creates a symbol of width w. This symbol consists of (from left to right):

(1) the material left;

(2) the code code;

(3) the material right.

The CST is set to be the composition of Tpt with

(x, y) 7→ ((w − wl − wr) · x+ wl , y)

where wl, wr are the widths of left and right, respectively. That is, (0, 0) is mapped to (wl, 0), (1, 0) is
mapped to (w − wr, 0), and (0, 1) is mapped to (0, 1). So the left side of code maps to wl (the edge of
left), and the right side to w − wr (the edge of right).

\strty@vstretch {〈name〉}{〈top〉}{〈bottom〉}{〈code〉}: This defines a macro named name which accepts a
parameter h, and creates a symbol of height h. This symbol consists of (from top to bottom):

(1) the material top;

(2) the code code;

(3) the material bottom.

The CST is set to be the composition of Tpt with

(x, y) 7→ (x , (d− ht − hb) · y + hb)

where ht, hb are the heights of top and bottom, respectively. That is, (0, 0) is mapped to (0, hb), (1, 0) is
mapped to (1, 0), and (0, 1) is mapped to (0, d − ht). So the top of code maps to d − ht (the bottom of
top), and the bottom to hb (the top of bottom).

\strty@hvstretch {〈name〉}{〈tl〉}{〈tr〉}{〈bl〉}{〈br〉}{〈top code〉}{〈bot code〉}{〈mid code〉}: This defines a
macro named name which accepts two parameters w, h. It creates a symbol of width w and height h of
the form: tl top code tr

mid code
bl bot code br

The transformations for each code are as follows:

• top code: let wtl , wtr be the widths of tl and tr respectively. Then TS is the composition of Tpt with

(x, y) 7→ ((w − wtl − wtr) · x+ wtl , y)

that is, the left side of top code maps to wtl , and the right side to w − wtr .

7

• bot code: let wbl , wbr be the widths of bl and br respectively. Then TS is the composition of Tpt with

(x, y) 7→ ((w − wbl − wbr) · x+ wbl , y)

that is, the left side of top code maps to wbl , and the right side to w − wbr .

• mid code: let ht, hb be the heights of the top and bottom materials, respectively. Then TS is the
composition of Tpt with

(x, y) 7→ (w · x , (h− ht − hb) · y + hb)

so

◦ (0, 0) (the bottom left of mid code) maps to (0, hb) (the top left of the bottom material);

◦ (1, 0) (the bottom right) maps to (w, hb) (the top right of the bottom material);

◦ (0, 1) (the top left) maps to (0, h− ht) (the bottom left of the top material);

◦ (1, 1) (the top right) maps to (w, h− ht) (the bottom right of the top material).

To create a stretched symbol, there are four steps:

(1) precisely measure the dimensions of the glyph you’re making stretchy;

(2) crop the glyph where you want (either using form XObjects, or clipping paths);

(3) use \strty@XXstretch (XX ∈ {h, v, hv}) on the cropped sections of the glyph, as well as the code to
connect them. This creates a stretchable symbol;

(4) define macro to get the material (super-, sub-script, and main material) and compute the dimensions
to stretch the symbol to.

For example, we can measure (textstyle)
∏

to get the (rough) dimensions of the strokes∏
Name Start End Difference

(top stroke top) 5.00006pt 10.0pt 4.99994pt

(top stroke bot) 5.00006pt 9.6pt 4.59995pt

Name Start End Difference

(left stroke) 1.59pt 2.56pt 0.97pt

(right stroke left) 6.87047pt 9.44447pt 2.574pt

(right stroke right) 7.84047pt 9.44447pt 1.604pt

Now we can create our own stretched \prod, with the following code:

1 \bgroup

2 \setbox0=\hbox{\mbnodp{\prod}} % product with no depth

3 \setbox1=\vbox to.5\ht0{\copy0\vss}

4 \setbox2=\vbox to.5\ht0{\vss\copy0}

5 \setbox3=\hbox to.5\wd0{\copy1\hss} % tl

6 \setbox4=\hbox to.5\wd0{\hss\copy1} % tr

7 \setbox5=\hbox to.5\wd0{\copy2\hss} % bl

8 \setbox6=\hbox to.5\wd0{\hss\copy2} % br

9 \pdfxform3 \xdef\prodtl{\pdfrefxform\the\pdflastxform}

10 \pdfxform4 \xdef\prodtr{\pdfrefxform\the\pdflastxform}

11 \pdfxform5 \xdef\prodbl{\pdfrefxform\the\pdflastxform}

12 \pdfxform6 \xdef\prodbr{\pdfrefxform\the\pdflastxform}

13 \egroup

14

15 \strty@hvstretch{stretchedprod}{\prodtl}{\prodtr}{\prodbl}{\prodbr}%

16 { % top connecting horizontal line

17 \strty@p{0}{5} m

18 \strty@p{1}{5} l

19 \strty@p{1}{4.6} l

20 \strty@p{0}{4.6} l

8

21 h
22 f
23 }%
24 {}%
25 {% connecting vertical lines

26 \strty@pd{0}{0}{1.59pt}{0pt} m

27 \strty@pd{0}{1}{1.59pt}{0pt} l

28 \strty@pd{0}{1}{2.56pt}{0pt} l

29 \strty@pd{0}{0}{2.56pt}{0pt} l

30 h
31 f
32 \strty@pd{1}{0}{-2.574pt}{0pt} m

33 \strty@pd{1}{1}{-2.574pt}{0pt} l

34 \strty@pd{1}{1}{-1.604pt}{0pt} l

35 \strty@pd{1}{0}{-1.604pt}{0pt} l

36 h
37 f
38 }

Doing then \stretchedprod{20pt}{20pt}, will give, for example:∏∏∏∏
The rest of the code to get the dimensions of the limits and main material and pass to \stretchedprodis
standard.

9

